首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   72篇
  国内免费   155篇
航空   304篇
航天技术   241篇
综合类   37篇
航天   260篇
  2024年   2篇
  2023年   13篇
  2022年   12篇
  2021年   25篇
  2020年   35篇
  2019年   24篇
  2018年   27篇
  2017年   22篇
  2016年   29篇
  2015年   31篇
  2014年   46篇
  2013年   36篇
  2012年   50篇
  2011年   34篇
  2010年   35篇
  2009年   32篇
  2008年   42篇
  2007年   48篇
  2006年   76篇
  2005年   38篇
  2004年   14篇
  2003年   28篇
  2002年   18篇
  2001年   5篇
  2000年   13篇
  1999年   30篇
  1998年   15篇
  1997年   6篇
  1996年   11篇
  1995年   21篇
  1994年   14篇
  1993年   3篇
  1991年   4篇
  1990年   2篇
  1984年   1篇
排序方式: 共有842条查询结果,搜索用时 31 毫秒
21.
The theory of electron cyclotron maser emission and its application to solar spike bursts are reviewed. By analogy with the Earth's AKR, three sources of free energy are considered: a loss-cone anisotropy, a velocity-space hole, and a trapped distribution. The problem of how the radiation escapes through the second harmonic absorption layer is emphasized. Harmonic emission due to z mode coalescence may operate for some bursts, but the 2–5s delay between hard X-ray bursts and spike bursts suggests that some other mechanisms is required for most spike bursts. A model involving formation of a trapped distribution in low-density regions neighboring the flaring flux tube is considered.  相似文献   
22.
We review work on diffusion coefficients of energetic particles with an attempt to extract implications on their behaviour at high latitudes. In the ecliptic plane results from solar energetic particle propagation between the Sun and about 5 AU can be described by an effective radial mean free path r which is approximately constant as a function of distancer. When particle propagation in three dimensions in the heliosphere is considered it is not sufficient to consider r only. Jovian electrons can be used as probes to determine the parameters of three-dimensional diffusion. In the polar regions diffusion is dominated by its parallel component. Some predictions how should vary with latitude are discussed. For different choices of this variation we present expectations for intensity-time profiles of solar particle events during the Ulysses polar passages.  相似文献   
23.
As Ulysses moved inward and southward from mid-1992 to early 1994 we noticed the occasional occurrence of inter-events, lasting about 10 days and falling between the recurrent events, observed at proton energies of 0.48–97 MeV, associated with Corotating Interaction Regions (CIR). These inter-events were present for several sequences of two or more solar rotations at intensity levels around 1% of those of the neighbouring main events. When we compared the Ulysses events with those measured on IMP-8 at 1 AU we saw that the inter-events appeared at Ulysses after the extended emission (>10 days) of large fluxes of solar protons of the same energy that lasted at least one solar rotation at 1 AU. The inter-events fell completely within the rarefaction regions (dv/dt<0) of the recurrent solar wind streams. The interplanetary magnetic field (IMF) lines in the rarefactions map back to the narrow range of longitudes at the Sun which mark the eastern edge of the source region of the high speed stream. Thus the inter-events are propagating at mid-latitudes to Ulysses along field lines free from stream-stream interactions. They are seen in the 0.39–1.28 MeV/nucleon He, which exhibit a faster decay, but almost never in the 38–53 keV electrons. We show that the inter-events are unlikely to be accelerated by reverse shocks associated with the CIRs and that they are more likely to be accelerated by sequences of solar events and transported along the IMF in the rarefactions of the solar wind streams.  相似文献   
24.
固体火箭喷管排气中的粒子分布   总被引:1,自引:0,他引:1  
王松柏 《航空学报》1990,11(12):606-609
1.前言 现代的固体火箭发动机为提高推进剂的能量特性及抑制不稳定燃烧,常常在推进剂中添加金属粉末,最常见的是加金属铝粉。在发动机工作时,铝粉燃烧形成凝聚相的氧化铝粒子。这些粒子在喷管中的流动过程中,温度、速度等方面的变化滞后于燃·气本身的变  相似文献   
25.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
26.
Observational evidence of the 11-year solar cycle (SC) modulation of stratosphere temperatures and winds from the ERA-40 dataset is reviewed, with emphasis on the Northern winter hemisphere. A frequency modulation of sudden warming events is noted, with warmings occurring earlier in solar minimum periods than in solar maximum periods. The observed interaction between the influence of the SC and the quasi biennial oscillation (QBO) on the frequency of sudden warmings is noted as a possible clue for understanding their mechanism of influence. A possible transfer route for the 11-year solar cycle from the equatorial stratopause region to the lowest part of the stratosphere is proposed, via an influence on sudden warming events and the associated induced meridional circulation. SC and QBO composites of zonal wind anomalies show anomalous wind distributions in the subtropical upper stratosphere in early winter. Mechanistic model experiments are reviewed that demonstrate a sensitivity of sudden warmings to small wind anomalies in this region. Various diagnostics from these experiments are shown, including EP fluxes and their divergence and also the synoptic evolution of the polar vortex, in order to understand the mechanism of the influence. Some recent GCM experiments to investigate the SC/QBO interaction are also described. They simulate reasonably well the observed SC/QBO interaction of sudden warming events and appear to support the hypothesis that tropical/subtropical upper stratospheric wind anomalies are an important influence on the timing of sudden warmings.  相似文献   
27.
Schunker  H.  Donea  A. -C. 《Space Science Reviews》2003,107(1-2):99-102
We present preliminary results from high resolution observations obtained with the Michelson Doppler Imager (MDI) instrument on the SOHO of two large solar flares of 14 July 2000 and 24 November 2000. We show that rapid variations of the line-of-sight magnetic field occured on a time scale of a few minutes during the flare explosions. The reversibility/irreversibility of the magnetic field of both active regions is a very good tool for understanding how the magnetic energy is released in these flares. The observed sharp increase of the magnetic energy density at the time of maximum of the solar flare could involve an unknown component which deposited supplementary energy into the system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
28.
原子氧对Kapton/Al薄膜性能影响研究   总被引:1,自引:0,他引:1  
模拟空间环境下原子氧辐照条件,通过采用固定的原子氧束流密度进行不同时间辐照试验,研究了温控涂层材料Kapton/Al薄膜的质量损失、光学性能、表面形貌和表面粗糙度的演化规律.试验结果表明,原子氧对材料的剥蚀量与原子氧的作用时间成正比例关系.材料辐照后太阳吸收率发生明显变化,而辐射率几乎不发生变化.辐照后试样表面的粗糙度,是影响太阳吸收率变化主要因素.随着辐照时间的增长,材料表面粗糙度增加,导致太阳吸收率增大.  相似文献   
29.
高温相变单元管蓄热过程数值模拟   总被引:1,自引:0,他引:1  
对以高温共晶盐 Li F-Ca F2 为相变材料 (PCM)和以干空气为工质的相变蓄热系统 ,采用焓方法建立了以控制体单元为对象的单管相变蓄热模型。在模拟空间站太阳能吸热 /储热器轨道运行参数下进行了数值计算。计算结果与地面模拟试验数据进行了比较 ,吻合良好。  相似文献   
30.
基于光滑粒子流体动力学方法(Smoothed Particle Hydrodynamics,SPH),开展了SPH新算法在蒸发燃烧领域的研究。建立了适用于SPH方法的蒸发数值模型,推导了基于傅立叶热传导公式和菲克扩散定律的SPH离散方程;借鉴VOF方法(Volume of Fluid)的思想,提出了SPH粒子的液相质量分数的概念,以有效表征蒸发过程中的相变问题。采用SPH方法对高温环境中单个液滴的蒸发过程进行数值模拟,结果符合D2定律,与理论模型相一致;在强迫对流环境中,液滴的蒸发过程受到对流作用及表面张力的影响,蒸发速率加快;进一步对双液滴在静止、对流环境中的蒸发过程进行数值模拟研究。结果表明,液滴的间距、滴径对多个液滴的蒸发过程影响至关重要,液滴间距至少在两倍的液滴直径以上,相互之间的影响才可以近似忽略。通过本文研究,拓宽了SPH方法在蒸发相变领域的应用范围,研究结果也能够为进一步的燃烧问题研究奠定基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号